Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Microbiol ; 14: 1155624, 2023.
Article in English | MEDLINE | ID: covidwho-20241277

ABSTRACT

Introduction: Our research group and others demonstrated the implication of the human endogenous retroviruses (HERVs) in SARS-CoV-2 infection and their association with disease progression, suggesting HERVs as contributing factors in COVID-19 immunopathology. To identify early predictive biomarkers of the COVID-19 severity, we analyzed the expression of HERVs and inflammatory mediators in SARS-CoV-2-positive and -negative nasopharyngeal/oropharyngeal swabs with respect to biochemical parameters and clinical outcome. Methods: Residuals of swab samples (20 SARS-CoV-2-negative and 43 SARS-CoV-2-positive) were collected during the first wave of the pandemic and expression levels of HERVs and inflammatory mediators were analyzed by qRT-Real time PCR. Results: The results obtained show that infection with SARS-CoV-2 resulted in a general increase in the expression of HERVs and mediators of the immune response. In particular, SARS-CoV-2 infection is associated with increased expression of HERV-K and HERV-W, IL-1ß, IL-6, IL-17, TNF-α, MCP-1, INF-γ, TLR-3, and TLR-7, while lower levels of IL-10, IFN-α, IFN-ß, and TLR-4 were found in individuals who underwent hospitalization. Moreover, higher expression of HERV-W, IL-1ß, IL-6, IFN-α, and IFN-ß reflected the respiratory outcome of patients during hospitalization. Interestingly, a machine learning model was able to classify hospitalized vs not hospitalized patients with good accuracy based on the expression levels of HERV-K, HERV-W, IL-6, TNF-a, TLR-3, TLR-7, and the N gene of SARS-CoV-2. These latest biomarkers also correlated with parameters of coagulation and inflammation. Discussion: Overall, the present results suggest HERVs as contributing elements in COVID-19 and early genomic biomarkers to predict COVID-19 severity and disease outcome.

2.
Int Immunopharmacol ; 118: 110055, 2023 May.
Article in English | MEDLINE | ID: covidwho-2272257

ABSTRACT

The complex alterations of the immune system and the immune-mediated multiorgan injury plays a key role in host response to SARS-CoV-2 infection and in the pathogenesis of COVID-19, being also associated with adverse outcomes. Thymosin alpha 1 (Tα1) is one of the molecules used in the treatment of COVID-19, as it is known to restore the homeostasis of the immune system during infections and cancer. The use of Tα1 in COVID-19 patients had been widely used in China and in COVID-19 patients, it has been shown to decrease hospitalization rate, especially in those with greater disease severity, and reduce mortality by restoring lymphocytopenia and more specifically, depleted T cells. Persistent dysregulation with depletion of naive B and T cell subpopulations and expansion of memory T cells suggest a chronic stimulation of the immune response in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). Our data obtained from an ex vivo study, showed that in PASC individuals with a chronically altered immune response, Tα1 improve the restoration of an appropriate response, most evident in those with more severe illness and who need respiratory support during acute phase, and in those with specific systemic and psychiatric symptoms of PASC, confirming Tα1 treatment being more effective in compromised patients. The results obtained, along with promising reports on recent trials on Tα1 administration in patients with COVID-19, offer new insights into intervention also for those patients with long-lasting inflammation with post-infectious symptoms, some of which have a delayed onset.


Subject(s)
COVID-19 , Thymosin , Humans , Thymalfasin/therapeutic use , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Lymphocytes , Homeostasis , Thymosin/therapeutic use
3.
Pathogens ; 11(10)2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2071677

ABSTRACT

Due to the presence of the ACE2 receptor in different tissues (nasopharynx, lung, nervous tissue, intestine, liver), the COVID-19 disease involves several organs in our bodies. SARS-CoV-2 is able to infect different cell types, spreading to different districts. In the host, an uncontrolled and altered immunological response is triggered, leading to cytokine storm, lymphopenia, and cellular exhaustion. Hence, respiratory distress syndrome (ARDS) and systemic multi-organ dysfunction syndrome (MODS) are established. This scenario is also reflected in the composition of the microbiota, the balance of which is regulated by the interaction with the immune system. A change in microbial diversity has been demonstrated in COVID-19 patients compared with healthy donors, with an increase in potentially pathogenic microbial genera. In addition to other symptoms, particularly neurological, the occurrence of dysbiosis persists after the SARS-CoV-2 infection, characterizing the post-acute COVID syndrome. This review will describe and contextualize the role of the immune system in unbalance and dysbiosis during SARS-CoV-2 infection, from the acute phase to the post-COVID-19 phase. Considering the tight relationship between the immune system and the gut-brain axis, the analysis of new, multidistrict parameters should be aimed at understanding and addressing chronic multisystem dysfunction related to COVID-19.

4.
Biomolecules ; 12(7)2022 07 15.
Article in English | MEDLINE | ID: covidwho-1938684

ABSTRACT

BACKGROUND: In the last two years, the SARS-CoV-2 pandemic has determined radical changes in human behaviors and lifestyles, with a drastic reduction in socialization due to physical distancing and self-isolation. These changes have also been reflected in the epidemiological patterns of common respiratory viruses. For this reason, early discrimination of respiratory viruses is important as new variants emerge. METHODS: Nasopharyngeal swabs of 2554 patients, with clinically suspected Acute Respiratory Infections (ARIs) from October 2019 to November 2021, were collected to detect 1 or more of the 23 common respiratory pathogens, especially viruses, via BioFilmArray RP2.1plus, including SARS-CoV-2. Demographical characteristics and epidemiological analyses were performed as well as a laboratory features profile of positive patients. RESULTS: An observational study on 2300 patients (254 patients were excluded because of missing data) including 1560 men and 760 women, median age of 64.5 years, was carried out. Considering the respiratory virus research request, most of the patients were admitted to the Emergency Medicine Department (41.2%, of patients), whereas 29.5% were admitted to the Infectious Diseases Department. The most frequently detected pathogens included SARS-CoV-2 (31.06%, 707/2300, from March 2020 to November 2021), InfA-B (1.86%, 43/2300), HCoV (2.17% 50/2300), and HSRV (1.65%, 38/2300). Interestingly, coinfection rates decreased dramatically in the SARS-CoV-2 pandemic period. The significative decrease in positive rate of SARS-CoV-2 was associated with the massive vaccination. CONCLUSION: This study represents a dynamic picture of the epidemiological curve of common respiratory viruses during the two years of pandemic, with a disregarded trend for additional viruses. Our results showed that SARS-CoV-2 had a preferential tropism for the respiratory tract without co-existing with other viruses. The possible causes were attributable either to the use of masks, social isolation, or to specific respiratory receptors mostly available for this virus, external and internal lifestyle factors, vaccination campaigns, and emergence of new SARS-CoV-2 variants.


Subject(s)
COVID-19 , Viruses , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2
5.
Risk Manag Healthc Policy ; 14: 4923-4930, 2021.
Article in English | MEDLINE | ID: covidwho-1597298

ABSTRACT

The Ebola virus disease, formerly known as Ebola hemorrhagic fever, is a severe and often fatal zoonosis in humans. The 2013-2016 West African Ebola outbreak had distinctive characteristics, and it was the largest and most complex epidemic since the virus discovery in 1976. Although the 2018-2020 Ebola outbreak in the Democratic Republic of the Congo had many similarities, there were additional challenges due to the presence of armed rebel groups at the epicenters of the epidemic. Despite these challenges, the extraordinary commitment of the World Health Organization (WHO) regional office for Africa, in collaboration with Africa Union (AU) member states through the Africa Centres for Disease Control and Prevention (Africa CDC), and WHO's prompt declaration of a Public Health Emergency of International Concern (PHEIC) shepherded an effective coordinated response to contain the epidemic. Learning from previous Ebola virus epidemics and the current Coronavirus disease 2019 (COVID-19) pandemic, the AU member states should strengthen inter-state coordination towards the development and implementation of a preparedness and readiness plan which will enable the continent to build and sustain resilient capacities to prevent, detect, and respond to future outbreaks following the International Health Regulations (IHR).

6.
Pathogens ; 10(12)2021 Dec 18.
Article in English | MEDLINE | ID: covidwho-1580541

ABSTRACT

BACKGROUND: Sialoadhesin (CD169) has been found to be overexpressed in the blood of COVID-19 patients and identified as a biomarker in early disease. We analyzed CD169 in the blood cells of COVID-19 patients to assess its role as a predictive marker of disease progression and clinical outcomes. METHODS: The ratio of the median fluorescence intensity of CD169 between monocytes and lymphocytes (CD169 RMFI) was analyzed by flow cytometry in blood samples of COVID-19 patients (COV) and healthy donors (HDs) and correlated with immunophenotyping, inflammatory markers, cytokine mRNA expression, pulmonary involvement, and disease progression. RESULTS: CD169 RMFI was high in COV but not in HDs, and it correlated with CD8 T-cell senescence and exhaustion markers, as well as with B-cell maturation and differentiation in COV. CD169 RMFI correlated with blood cytokine mRNA levels, inflammatory markers, and pneumonia severity in patients who were untreated at sampling, and was associated with the respiratory outcome throughout hospitalization. Finally, we also report the first evidence of the specific ability of the spike protein of SARS-CoV-2 to trigger CD169 RMFI in a dose-dependent manner in parallel with IL-6 and IL-10 gene transcription in HD PBMCs stimulated in vitro. CONCLUSION: CD169 is induced by the spike protein and should be considered as an early biomarker for evaluating immune dysfunction and respiratory outcomes in COVID-19 patients.

7.
EBioMedicine ; 66: 103341, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1184943

ABSTRACT

BACKGROUND: Despite an impressive effort in clinical research, no standard therapeutic approach for coronavirus disease 2019 (COVID-19) patients has been established, highlighting the need to identify early biomarkers for predicting disease progression and new therapeutic interventions for patient management. The present study aimed to evaluate the involvement of the human endogenous retrovirus -W envelope (HERV-W ENV) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection considering recent findings that HERVs are activated in response to infectious agents and lead to various immunopathological effects. We analysed HERV-W ENV expression in blood cells of COVID-19 patients in correlation with clinical characteristics and have discussed its potential role in the outcome of the disease. METHODS: We analysed HERV-W ENV expression in blood samples of COVID-19 patients and healthy donors by flow cytometry and quantitative reverse transcriptase PCR analysis, and evaluated its correlation with clinical signs, inflammatory markers, cytokine expression, and disease progression. FINDINGS: HERV-W ENV was highly expressed in the leukocytes of COVID-19 patients but not in those of healthy donors. Its expression correlated with the markers of T-cell differentiation and exhaustion and blood cytokine levels. The percentage of HERV-W ENV-positive lymphocytes correlated with inflammatory markers and pneumonia severity in COVID-19 patients. Notably, HERV-W ENV expression reflects the respiratory outcome of patients during hospitalization. INTERPRETATION: Given the known immuno- and neuro-pathogenicity of HERV-W ENV protein, it could promote certain pathogenic features of COVID-19 and therefore serve as a biomarker to predict clinical progression of disease and open to further studies for therapeutic intervention. FUNDING: Information available at the end of the manuscript.


Subject(s)
COVID-19/virology , Gene Products, env/metabolism , Pregnancy Proteins/metabolism , T-Lymphocytes/virology , Aged , Antiviral Agents/therapeutic use , COVID-19/etiology , COVID-19/therapy , Case-Control Studies , Cell Differentiation , Cytokines/metabolism , Endogenous Retroviruses , Female , Gene Products, env/genetics , Hospitalization , Humans , Interleukin-6/blood , Interleukin-6/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Pregnancy Proteins/genetics , Severity of Illness Index , T-Lymphocytes/metabolism , Treatment Outcome
8.
Open Forum Infect Dis ; 8(1): ofaa588, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1052206

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is characterized by immune-mediated lung injury and complex alterations of the immune system, such as lymphopenia and cytokine storm, that have been associated with adverse outcomes underlining a fundamental role of host response in severe acute respiratory syndrome coronavirus 2 infection and the pathogenesis of the disease. Thymosin alpha 1 (Tα1) is one of the molecules used in the management of COVID-19, because it is known to restore the homeostasis of the immune system during infections and cancer. METHODS: In this study, we captured the interconnected biological processes regulated by Tα1 in CD8+ T cells under inflammatory conditions. RESULTS: Genes associated with cytokine signaling and production were upregulated in blood cells from patients with COVID-19, and the ex vivo treatment with Tα1-mitigated cytokine expression, and inhibited lymphocyte activation in a CD8+ T-cell subset specifically. CONCLUSION: These data suggest the potential role of Tα1 in modulating the immune response homeostasis and the cytokine storm in vivo.

9.
Heliyon ; 6(10): e05143, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-807904

ABSTRACT

We collect the nasopharyngeal and oropharyngeal swabs of 63 subjects with severe symptoms or contacts with COVID-19 confirmed cases to perform a pilot-study aimed to verify the "in situ" expression of SARS-CoV-2 host invasion genes (ACE2, TMPRSS2, PCSK3, EMILIN1, EMILIN2, MMRN1, MMRN2, DPP4). ACE2 (FC = +1.88, p ≤ 0.05) and DPP4 (FC = +3, p < 0.01) genes showed a significant overexpression in COVID-19 patients. ACE2 and DPP4 expression levels had a good performance (AUC = 0.75; p < 0.001) in distinguishing COVID-19 patients from negative subjects. Interestingly, we found a significant positive association of ACE2 mRNA and PCSK3, EMILIN1, MMRN1 and MMRN2 expression and of DPP4 mRNA and EMILIN2 expression only in COVID-19 patients. Noteworthy, a subgroup of severe COVID-19 (n = 7) patients, showed significant high level of ACE2 mRNA and another subgroup of less severe COVID-19 patients (n = 6) significant raised DPP4 levels. These results indicate that a group of SARS-CoV-2 host invasion genes are functionally related in COVID-19 patients and suggests that ACE2 and DPP4 expression level could act as genomic biomarkers. Moreover, at the best of our knowledge, this is the first study that shows an elevated DPP4 expression in naso- and oropharyngeal swabs of COVID-19 patient thus suggesting a functional role of DPP4 in SARS-CoV-2 infections.

SELECTION OF CITATIONS
SEARCH DETAIL